Definitions

from Wiktionary, Creative Commons Attribution/Share-Alike License.

  • noun set theory A set together with an equivalence relation.

Etymologies

from Wiktionary, Creative Commons Attribution/Share-Alike License

set +‎ -oid

Examples

  • A quotient is a setoid stuffed into a set, an abstract datatype whose interface ensures representation-hiding.

    Planet Haskell

  • A quotient is a setoid stuffed into a set, an abstract datatype whose interface ensures representation-hiding.

    Planet Haskell

  • P ≡ Q = let open EqR (PropEq. setoid († A)) in begin

    Planet Haskell

  • P ≡ Q = let open EqR (PropEq. setoid († A)) in begin

    Planet Haskell

  • P ≡ Q = let open EqR (PropEq. setoid († A)) in begin

    Planet Haskell

  • P ≡ Q = let open EqR (PropEq. setoid († A)) in begin

    Planet Haskell

  • Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩

    Planet Haskell

  • Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩

    Planet Haskell

  • Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩

    Planet Haskell

Comments

Log in or sign up to get involved in the conversation. It's quick and easy.